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Abstract

The share of the population living in urban centres has vastly increased in recent
decades, and is predicted to further expand in the future. In this context, research
on the environmental impact of different urban environments, in terms of both
the form and built-up structure of cities, is particularly important to understand
whether smart urban design can help mitigate the nefarious impacts of climate
change. This study aims at investigating relevant associations between urban form
(and specifically, urban compactness) and carbon dioxide emissions of the residential
and on-road transport sectors on a global scale. The study also employs a recently
established, internationally comparable definition of “urban centre”, which follows
population-based criteria to eliminate bias from socio-cultural or administrative
factors potentially determining city boundaries. The results show that lower levels
of emissions of the residential and transport sectors occur in urban environments
taking on more compact shapes especially in Africa and Asia, whereas the impact
of urban compactness is found to be limited in Europe and North America.
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Manuscript

Urban centres have been at the core of human history since the initial agglomeration

of population in 3700 BC in ancient Mesopotamia [1], when the needs to rationalise

defence efforts and transport costs provided incentives for households to locate in places

at the intersection of major trade routes and to build walls to protect themselves [2–4].

The reasons for the growth in size and number have remained substantially unchanged

across centuries, although with the advent of the most recent phase of globalisation, cities

have become the places of opportunity, where individuals have a better quality of life, can

acquire knowledge, educational and health care services and may have better employment

opportunities, all factors that have attracted population from non-urban to urban areas

in both developing and developed countries [5–7].

As of 2020, 50% of global population live in urban areas, compared to 25% in 1950,

and this share is expected to rise to 58% in 2070 [8]. These numbers are not only a

synthetic measure of a wider and tumultuous urbanisation trend that has characterised

recent decades, but they are also indicative of the spatial shift of consumption and its

related external costs. Moving from non-urban areas to cities implies not only moving

the location of consumption, but also, as individual income increases, increasing total

consumption [9, 10].

This paper is the first attempt at measuring the impact of the dynamics of urban form

on carbon emissions for 11,450 cities worldwide over a considerable time period, that is

1975–2020. Several socio-economic mechanisms and spatial patterns in the organisation of

production activities make the association between urbanisation and the environment un-

certain. On one hand, cities are major contributors to CO2 emissions as they account for
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around 70% of global emissions, mostly from industrial and motorised transport systems

that are particularly concentrated around urban centres [11]. Although the concentration

of population may promote forms of environmental efficiency, differences in consumption

paths between urban and rural areas may lead to a global deterioration in environmental

quality [12–14]. In this context, the literature on the environmental impact of urbaniza-

tion has generally found a positive relationship between the share of the population living

in cities and emissions, with some weak evidence in favour of the presence of an envi-

ronmental Kuznets curve when accounting for income. According to this interpretation,

cities at the higher end of the income distribution may end up polluting less thanks to

greater technological development, service-based economies and enhanced environmental

awareness of their citizens [15–19].

At the same time, however, cities take advantage of economies of scale in the provision

of public services and may decrease the quantity of carbon emissions per capita [9, 20].

Figure 1 uses our dataset to estimate the share of the population and the share of total

carbon emissions produced in urban centres at the global level and in each continent.

The two clearly follow parallel trends and have increased over time at the global level. In

our study, however, we only look at emissions directly produced in urban centres, which

are less than the total consumption-based carbon footprint of cities. The lower value

compared to the urban population share thus indicates not only that efficiency dynamics

may be at play, but also that cities out-source a significant share of their emissions.

As cities across the world have increased in number and size in recent decades, the

academic debate on the consequences of the spatial organization of urban centres has been

flourishing, with a large portion of this research focusing on their internal organisation and

spatial dynamics. The urban economic literature has proven theoretically and empirically
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that planning for compactness as a measure against urban sprawl reduces external costs

as compact cities have more regular shapes that minimize the distance between locations

within their boundaries, and present higher population density [21–24]. Research inquiring

into the social effects of urban compactness has found positive outcomes, such as faster

population growth [25], greater satisfaction thanks to improved access to public transport

and liveability [26], greater efficiency [27] and better access to facilities [28]. There exist,

however, important downsides, including reduced living space, lack of affordable housing

[29], overcrowding and greater exposure to air pollution [27, 30].1

There is a multitude of reasons for the significant impact of urban compactness on the

environmental performance of cities, including economies of scale. In the United States,

research using gridded population, land use and CO2 emissions data finds that population

density is negatively associated to on-road emissions in cities, while the relation is positive

for urban sprawl [23]. In Japan, a study using a cross section of 50 cities finds evidence

in favour of a negative association between compactness and CO2 emissions [21]. At the

same time, in China, where urbanization has grown considerably in recent decades, Ou

et al. [22] exploit a panel of cities that expanded rapidly in the period from 1990 to 2010

to find negative associations between different compactness metrics and emissions records,

and a positive link between compactness and quality of the urban road infrastructure.2 A

study for EU member states looks at the dynamics of compact cities using country-level

data from 2000 to 2012, by computing the weighted average of a compactness metric

for urban centres and investigating its effect on carbon dioxide emissions [35]. While a

1A review of the academic debate on the consequences of urban compactness versus sprawl confirms
that the benefits of compact city shapes are generally found to outweigh those of less dense urban areas,
while acknowledging the presence of challenges in both types of built environment [31].

2More studies in China and Japan yield similar conclusions [24, 32, 33], while at least one other study
[34] finds conflicting results by uncovering a positive link between emissions and urban density while
using cross-sectional data on Chinese urban centres in 2013.
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beneficial effect emerges of both physical compactness and population density on reducing

emissions, the effect of density is found to prevail over physical compactness.

Data on urban centres and CO2 emissions

Recently, the literature on the environmental impact of cities has also focused on the avail-

ability of geo-localised data for studying their carbon footprint. However, obtaining data

on emissions at an adequate resolution and quality has historically been complex: while

different sources exist, their validity is often undermined by inconsistencies and endogene-

ity issues. Self-reported emission accounts from urban administrations, for instance, are

generally obtained following different methods and rely on administrative definitions of

“city” or “municipality”, which are themselves influenced by historical, economic and po-

litical factors. Recent progress has been made through the effort of organisations such as

the Carbon Disclosure Project, which aims at harmonizing the cross-country administra-

tive collection of data on emissions of urban centres, by providing guidelines for reporting

and collecting the resulting estimates in yearly databases [36]. These data have already

been employed to produce a scientific dataset of urban emissions and ancillary variables

[37].

Information from Environmentally Extended Input-Output (EEIO) Tables has been

used to trace the carbon footprint of 13,000 cities all around the globe in the Gridded

Global Model of City Footprints (GGMCF) [38]. The carbon footprint is a more complex

concept with respect to just CO2 emissions, as it entails an assessment of the emissions of

the production processes leading to a certain product, and therefore an additional level

of detail. To this end, the EEIO Tables data are used to estimate consumption flows and

related carbon emissions across countries, calculating total imported and exported emis-
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sions. These are then attributed to regions using subnational CF models, and eventually

to cities using data on rural versus urban consumption patterns. In our study, however,

we only focus on direct emissions produced in urban centres for two sectors that have the

highest potential to be affected by urban form: the residential energy sector (heating and

cooling for buildings) and the on-road transport sector.

Finally, a different method to estimate emissions relies on satellite information on

CO2 atmospheric concentration. This can be used to trace emissions via combination

with a set of other geographical, climate and socio-economic variables in spatial models.

A database relying on this methodology has provided information on CO2 emissions of 20

cities across the world [39]. More recently, atmospheric data have been used to reach a

sample size of 1,236 cities across multiple continents from 2014 to 2020 [19]. The results

have also been used to investigate links between population density and the estimated

emissions, finding a negative correlation between the two [19]. While promising, this type

of data would still restrict our sample and prevent the sectorial differentiation of emissions

data, which is an important feature of our analysis.

In general, and apart from these sources, the review of existing literature highlights

a lack of global comparable evidence with time varying data on both emissions and urban

forms. We attempt to partially bridge this gap with the current study, as we assemble

a dataset using time-varying, high resolution spatial data on the degree of urbanization,

sectorial carbon emissions, urban form indicators and ancillary variables (temperature,

precipitations and GDP) for cities across the world. The database covers the 5-years

intervals from 1975 to 2020. Urban boundaries are obtained starting from raster data at

a 1 km resolution on the degree of urbanization from the GHS-SMOD dataset, released as

part of the European Commission’s Global Human Settlement Layer (GHSL) project [40].
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We only select entities qualified as “urban centres”, i.e. with a population of more than

50,000 inhabitants and a population density above 1,500 inhabitants per km2, resulting

in a database of 11,435 cities in 2020 (our reference year).

We assign to each “urban centre” information on CO2 emissions drawn from the

EDGAR Database [41, 42]. These are obtained for all world countries, using sector-

specific indicators of human activity, technology, fuel mix and abatement percentage to

estimate total emissions.3 The country-sectorial results are down-scaled using spatial

proxy data on the location of energy and industrial facilities, residential and agricultural

areas, etc. to obtain the final resolution of 0.1 degrees [41, 42]. In addition to EDGAR

data, we include ancillary information from other sources on the population [43] and built

environment of cities [44], their climate [45] and GDP [46], and we compute urban form

indicators. A comprehensive, step-by-step explanation of the data construction process is

provided in the Methods section and further detailed in the Supplementary Information.

We believe our data ensure consistency both in the definition of “urban centre”, which

is solely based on population criteria and therefore allows us to draw comparisons across

continents and income groups, and in the methods used to estimate emissions, which

do not resent from the sample bias and methodological heterogeneity of public emission

accounts from administrative self-reporting. At the same time, using the newly released

GHS-SMOD data on the degree of urbanization across the globe [40] gives us the advantage

of obtaining time-varying information on evolving urban boundaries at a relatively high

frequency. It allows us to build a fixed effects model and ignore city-level time invariant

characteristics, such as factors linked to their geographic location or institutional setting,

that may endogenously bias our results.

3The final estimates of CO2 emissions in EDGAR are disaggregated by type of fuel, with a distinction
between non-short-cycle-organic and short-cycle-organic fuels. These two categories are aggregated for
the purpose of this study.
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Changing urban form and the geometry of cities

Previous literature has focused on limited samples of cities, often for specific countries,

and has made use of population density as a proxy variable for urban form. In this study,

we aim to provide more compelling evidence on the impact of urban compactness on

carbon emissions by taking a wider perspective, using comparable data on 11,435 cities

across the world and focusing on their form, that is the shape of the built area, under

the hypothesis that more compact cities are more efficient and allow for lower energy

consumption, especially regarding transportation. In this respect, Figure 2 shows the

evolution of the ratios of total urban area and total urban residential built-up surface to

urban population from 1975 onwards. The ratios have not varied to a large extent at the

global level, but with important regional differences: in Europe and Asia, urban area per

citizen has increased, while it has decreased for America, Oceania and especially Africa,

whose urban centres have become more dense.

In our empirical analysis, we include total urban area as an indicator of urban sprawl:

fixing population by always looking at emissions in per capita terms, a larger area may

be expected ex-ante to increase travel distances and be conducive to sprawl. In addition

to this, we construct more elaborate geometric urban form indicators including the Com-

pactness Index (CI), the Range Index (RI), and the Sprawl Index (SI). Figure 3 highlights

the data and geometric figures involved in the computation of the CI, the RI and the SI for

a random city in the sample, Milan in Italy. A more detailed explanation of the formulas

and computational methods for each is provided in the Methods section.

The CI was first designed by Li & Yeh [47] in their study on the evolution of land use

patterns in the Chinese Pearl River Delta during the period of fast economic growth of the
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’80s and ’90s, and has often been used to describe the compactness of cities [21, 35, 48].

It is a unit-less measure obtained by comparing the perimeter of the land patch of interest

and the perimeter of a circle with equivalent area. The circle represents an “optimally”

compact settlement, where the distance between each point is as small as possible for a

given area, and the CI represents distance of the urban centre’s form from this idealized

shape. Higher values of the index correspond to more compact cities. The RI [25, 49]

describes compactness in a slightly different way, comparing the diameters of a circle

with area equivalent to the urban centre, and that of the smallest circle circumscribing it.

Once again, the indicator correlates positively with compactness, but it is more sensitive to

irregularities in shape that may strongly increase the diameter of the minimum enclosing

circle, and is therefore less stable than other measures.

Finally, the SI was developed in seminal work on the determinants of sprawl [50] and

further discussed for its compactness properties and modified in later research [49, 51].

The index draws on built-up classification raster data to measure the extent of urban

sprawl in a given territory. For each pixel of residential built-up surface, it is obtained by

computing the share of undeveloped cells (“open space”) in a given area around the pixel,

and then averaging the resulting value over all residential pixels within the territory. Thus,

the SI describes the extent to which the surroundings of residential areas are also exploited

and occupied by other built-up surface (for residential or non-residential use). Clearly,

the surface of an urban centre should not be completely full, i.e. entirely occupied by

residential built-up surface, as this would remove amenities such as parks, urban forests,

waterways, etc. At the same time, however, the leapfrogging of residential development

over large open areas is a symptom of urban sprawl. In urban centres, greater sprawl may

reduce energy efficiency resulting from agglomeration, increase travel distances between
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locations and therefore have an impact on per capita CO2 emissions.

Association between urban form and emissions

In our empirical analysis, we estimate panel regressions with city-specific fixed effects and

control for time-varying GDP, average yearly temperature and precipitations, clustering

errors at the country level. Table 1 presents the coefficients on the urban form indica-

tors for the per capita CO2 emissions of the residential sector (heating and cooling for

buildings), while Table 2 focuses on emissions from on-road transport. For the residen-

tial sector, the values of the R2 are smaller than for the transport sector, for which the

indicator is consistently high, indicating a high predictive power of the models employed.

This suggests that the dynamics behind the emissions of on-road transport are more eas-

ily explained by urban form than those for heating and cooling buildings. Furthermore,

GDP per capita fares better at explaining the emissions of the transport sector than the

residential, as evidenced by the larger magnitude of its coefficients in Table 2 compared

to Table 1.

Regarding urban form indicators, almost all coefficients are significant and with the

expected sign: cities with a smaller area and more compact urban forms, proxied by

higher values of the compactness and range index, tend to emit less CO2 per citizen in the

residential (heating and cooling for buildings) and the on-road transport sectors. Looking

at the compactness index, a 10% decrease in the indicator (such as that experienced, for

instance, by the cities of Hamburg in Germany or Bangalore in India in our sample from

2010 to 2015) is associated with an increase of about 2.4% in residential emissions, and

3.4% in on-road transport emissions. For the average city in our sample in 2010, with a

population of about 290,000 inhabitants, this translates into a decrease in CO2 emissions
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for heating and cooling buildings of about 5 kg per inhabitant, for a total of 1.4 thousand

tonnes. For on-road transport, while the marginal effect is stronger in magnitude, the

overall increase in emissions of the average city is entirely comparable, again with about

5 more kg per citizen and 1.4 thousand tonnes for an average urban centre. Still, results

are heterogeneous across countries and corresponding income groups, an aspect that we

investigate in greater detail later.

For both sectors investigated, the estimated coefficient on the RI is smaller than that

on the CI, despite the indexes capturing the same broad notion of compactness. This may

be due to the lower stability of the RI, which is altered more strongly by small variations

in city shape due to the way it is constructed. Nevertheless, the coefficient on the RI is

still negative and statistically significant. For buildings, a relevant channel behind the

association of these indicators with emissions may be the sharing of carbon intensive goods

linked to the provision of heating and cooling: compact city development is characterised

by the construction of buildings, rather than single dwelling units, which consume less

energy per person and thus emit less per capita CO2 [14, 52, 53]. For on-road transport,

on the other hand, a larger area is associated with greater average distances within the

urban centre, and subsequently higher emissions per person. The CI and RI capture this

aspect by looking at geometric differences in urban boundaries that may alter the average

distance between two random points within the city, while keeping area constant. Finally,

the coefficient on the sprawl index is positive and significant for the residential sector,

while it becomes negative, although insignificant, for emissions of the on-road transport

sector.

To increase the robustness of our estimates, Extended Data Tables 1 to 4 provide

a set of additional specifications for our analysis. As a first step, we re-estimate the
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two main regressions after balancing our panel of cities. We only retain urban centres

characterised as such for the entire period from 1995 to 2015 (the period for which our

regressions including GDP are estimated), thus removing gaps in the data. Extended

Data Table 1 shows the results of the fixed effects model estimated for the balanced panel

on emissions from the residential and the transport sectors respectively: the coefficients

retain the same sign and significance level in all cases. Extended Data Table 2, on the other

hand, shows the results of the main regression estimated on total, rather than sectorial,

per capita urban carbon emissions. The findings for the residential and transport sector

appear to be transferred also to the total emission count: GDP per capita is positively

and significantly associated with total emissions, while the compactness indicators appear

to be beneficial towards a reduction in total emissions. The effect of the sprawl index

is negative, but close to 0 and not significant, which mimics the results obtained for the

on-road transport sector.

Extended Data Table 3 includes country-specific linear time trends in the model

specification. The levels of carbon emissions in urban centres may indeed also depend on

factors changing over the time span of our sample, such as ongoing technological progress

or the results of long-term policy agendas aimed at fighting climate change by reducing

emissions over time. We model this by including a generic 5-year trend in our main

equation and interacting it with country-level dummies to control for specific trends in

cities belonging to the same country. The general trend is negative and significant for the

residential per capita CO2 emissions, whose levels have slightly decreased globally over

time, while it is not significant for per capita emissions in the on-road transport sector,

whose emissions haven’t followed a clear pattern and have remained quite constant at

the global level, despite differences across continents. As for the coefficients on GDP and
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urban form indicators, they remain substantially unaltered.

To reduce endogeneity, Extended Data Table 4 provides the results of transforming

our main specification into a dynamic model including a lagged value of the dependent

variable and using lagged values of the independent variables as instruments, employing

GMM-IV estimations following Arellano and Bond [54]. Such a method has already been

adopted in research using similar data on urban centres [55]. The results maintain the

direction and significance of the main specification, confirming that the relation between

urban form and emissions is not spurious for both sectors.

Heterogeneity across income and continents

Figure 4 plots the marginal effect of area and the urban form indicators, conditional on

location in each continent. Extended Data Figure 1 repeats the process, but looking

at heterogeneity across income classes. The marginal effects are obtained from a model

including interaction terms between urban form and the continent and income dummies

(see Methods). They shed light on the geographical differences in the association between

urban form and the environmental impact of cities. For area, the compactness and the

range index, the effect appears to vary significantly by geographic region: the associations

with residential and transport emissions are generally not significant for North America

and Europe, whereas they become negative and significant for Asia and South America.

In general, and with the exception of the sprawl index, the marginal effects for low and

lower middle income countries are more pronounced than for high income countries. This

is a promising aspect, as these countries also have higher rates of urbanization and thus

greater potential to curb emissions in the future, via careful urban planning.

In Africa, for instance, a 10% increase in the compactness index is associated with a
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4% decrease in emissions for heating and cooling buildings, about double the association

detected at the global level. For the average urban centre in the continent in 2010, with

a population of 230,000, this translates into a decrease of 3 kg per citizen and about 700

tonnes in total in the city. This is a far smaller change compared to the global effect

in absolute terms due to the ex-ante lower levels of emissions of African cities, but the

higher marginal effect can be expected to play a more important role in the future, as

African cities grow bigger and more polluting. In Asia, a 10% increase in the compactness

index of the average urban centre, whose population is of about 300,000 inhabitants, is

associated with a 2% decrease in carbon emissions from on-road transport, corresponding

to around 2 kg per citizen and 600 tonnes in total.

The sprawl index appears to follow a different pattern, as the corresponding coeffi-

cients have a stronger magnitude for cities in Europe and North America. As the SI was

designed focusing on the US context [50] and captures more complex internal structures

in the urban built environment, describing interrelations between residential built-up sur-

face and the surrounding open space, perhaps it is better suited to the analysis of cities

in these continents, and especially North America. In the continent, a decrease in about

5% in the index, such as that experienced by San Diego in the United States or Quebec

City in Canada between 2010 and 2015, is associated with a 3.4% decrease in residential

emissions. For the average North American urban centre, this translates into 24 more kg

per citizen, and 9 thousand tonnes in total at the city level.

Before concluding, heterogeneity in our sample of cities is also explored following the

distribution of the dependent variable. Extended Data Table 5 shows the coefficients on

our urban form indicators in a set of separate regressions (using our main specification) for

each quintile in the distribution of either residential CO2 emissions (panel a) or on-road
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transport CO2 emissions (panel b), in 1990. Despite the sample sizes being approximately

the same in each of the regressions, the coefficients on the indicators are generally stronger

in magnitude and significance in the lower quintiles, while significance fades away in the

upper 5th quintile of the emissions distribution.

Conclusion

The climate crisis is a challenge that governments and policy makers will continue to face,

with mounting pressure, in the future. As people choose at an increasing rate to leave

rural areas in favour of the opportunities and lifestyle offered by cities, the role of the

latter as major emissions hubs is going to increase in parallel. In this context, studying

the measures that can be taken to reduce CO2 emission records of urban settlements

through the design and efficiency of the built environment is of great relevance, and can

help inform smart city planning. Building compact cities has long been debated as one

such measure, and this study exploits a global dataset relying on a consistent definition

of “urban centre” and the construction of a set of urban form indicators to shed light on

the global associations between compactness and residential and transport CO2 emissions

in cities.

The results of the empirical analysis unveil a negative and significant association be-

tween compactness and per capita CO2 emissions of the residential and transport sector.

These findings are obtained while controlling for factors that notoriously affect urban

ecosystems and their environmental impact, such as income, but also external climate

factors, and estimating a fixed effects model to control for unobserved time-invariant

characteristics of cities which may affect their environmental impact. Assessing heteroge-

neous effects by continent and country income class yields that compactness is found to

15



be more strongly negatively associated with emissions in countries between the lower and

the middle end of the income distribution, suggesting compact city shapes may be more

beneficial in these contexts. These results prompt for a more efficient urban planning for

both the formal and informal city in Asian and African cities and its effectiveness might

bring larger benefits in terms of containment of carbon emissions.
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Methods

Data on urban centres

A statistical analysis of the characteristics of cities across the world and their association

with CO2 emissions requires a consistent and internationally comparable definition of

“urban centre”, as the characterization of a “city” may vary across countries [39]. The

issue of international comparability of the information on urban centres was recently

brought to the fore by the United Nations Statistical Commission, which endorsed a new,

global definition of urban centres aimed at overcoming the lack of consistency in their

identification across countries [56].4 As anticipated, the new definition disregards the

influence of social, economic or geographical factors varying at the country level, and

defines cities in terms of their overall population and density. It characterizes a “city”

as a human settlement with population above 50,000 inhabitants and average population

density above 1,500 inhabitants per square km [57].

In line with these developments in official statistics, our dataset is assembled starting

from information on settlement classification made available by the European Commis-

sion as part of the Global Human Settlement Layer (GHSL) project: the GHS Settlement

Model Grid (GHS-SMOD). GHS-SMOD provides spatial information from 1975 to 2020,

at 5 years intervals and at a 1 km resolution,5 on the types of settlements on the Earth’s

surface, ranging from “rural clusters” to “urban centres” following the Degree of Urban-

ization definition [40]. To obtain urban boundaries, we isolate contiguous pixels classified

4The definition was designed in partnership with other international organisations, including: the Eu-
ropean Union (EU), the Organization for Economic Cooperation and Development (OECD), the World
Bank, UN-Habitat, the Food and Agriculture Organization (FAO) and the International Labour Orga-
nization (ILO).

5Each raster pixel covers an area of 1 km2.
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as “urban” in the SMOD data. We obtain information for 6,371 urban centres in 1975,

almost doubling to 11,435 in 2020. The boundaries we identify do not coincide with the

urban boundaries defined at the administrative level, as the criteria used in the SMOD

database to classify pixels solely rely on total population and population density. To form

our panel dataset, we use the most recent time period available, 2020, as reference year

and assign the same panel unit ID to cities based on whether the polygons representing

their boundaries in different years were overlapping with the 2020 boundaries.6 The Sup-

plementary Information displays graphically the raster polygonization process, mapping

the original GHS-SMOD data, their transformation into the “urban centres” boundaries

and the evolving boundaries over time.

Urban form indicators

Having obtained spatial information on urban boundaries, we can construct measures

of urban form and structure, to determine the degree of compactness of cities. First,

we easily compute total urban area for each year of data availability. In addition, we

consider a set of compactness indicators: the compactness index (CI), the range index

(RI), and the sprawl index (SI). The CI of a land patch is computed as the ratio between

the perimeter of a circle having the same area as the land patch of interest and the area

6By taking 2020 as reference year, we include in the sample all cities that met the Degree of Urban-
ization threshold that year. Gaps are allowed, e.g. there may be urban centres that met the threshold
in 1975 and 1980, fell short in the following decades and met again the threshold in 2020. In exceptional
cases where two or more separate urban centres merged into a single city before 2020, we only include
in the sample the city with the largest overlapping surface with the 2020 urban centre. This time flex-
ibility in the entities considered to be “urban centres” is made possible by the use of a definition, the
Degree of Urbanization, that is entirely population-based and, as anticipated, does not take into account
administrative or other country-level criteria.
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of the land patch itself [47, 51], according to the following equation:

CIi =
Pi

pi
=

2
√
πSi

pi

where pi and Pi represent, respectively, the perimeters of urban centre i and of the

equivalent-area circle, while Si is the area of the urban centre. The index takes val-

ues between 0 and 1, where the maximum value of one would be reached in the extreme

case where the city’s shape is a perfect circle. The RI is similar, but it takes the ratio

of the diameter of a circle having the same area as the urban centre of interest, and the

diameter of the smallest circle circumscribing it. The equation:

RIi =
Di

di
=

2

di

√
Si

π

describes the index, where Di and di represent, respectively, the diameters of the equiv-

alent area circle and of the minimum enclosing circle, and Si is once again the urban

centre’s surface.

To compute the SI, we draw on raster data on residential and non-residential built-

up surface at a 100 m resolution from the GHS-BUILT dataset [44], part of the GHSL

project. We determine a pixel to be “developed” if 20% of its 10,000 m2 surface is built,

and “residential” if 20% of its 10,000 m2 surface is residential. For each pixel, we focus

on the 810,000 m2 square centred around it (i.e. containing 80 additional pixels each with

a size of 100 m) and compute the share of pixels classified as “open space” in this area,

excluding water surfaces from the count.7 The process is automatically repeated for each

“residential” pixel, and then the average within the urban boundaries is taken to obtain

7To include water surfaces, we use raster data from the GHS-LAND dataset at a 100 m resolution
[58], and qualify a cell as “water surface” if at least 20% of its surface is covered by water.
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the sprawl index.

CO2 emissions and ancillary variables

To complete the database, we include information on our main variable of interest, carbon

dioxide emissions. We complement this with data on population, GDP, average temper-

ature and precipitations. This wealth of information is drawn from a variety of high-

resolution raster data sources, listed in Supplementary Information Table 1. To merge

the data together, the urban centres boundaries from the GHS-SMOD dataset are first

re-projected to the same Coordinate Reference System (CRS) as the raster data. Then,

raster pixels falling within the urban boundaries are assigned to the corresponding urban

centre, while those falling only partially within urban boundaries are weighted based on

the share of surface overlapping the urban centre. Then, a weighted sum is computed

for CO2 emissions, population and GDP, and a weighted average for temperature and

precipitations. The process of merging different spatial datasets is further illustrated in

the Supplementary Information.

Data on CO2 emissions is drawn from the European Commission’s Emissions Database

for Global Atmospheric Research (EDGAR), providing yearly estimates of human-induced

CO2 emissions (in tonnes) from 1970 to 2022 at a 0.1 degrees resolution, approximately

11.1 km at the equator [41, 42]. The estimates are available at the sectoral level: in our

analysis, we include emissions from the residential sector (heating and cooling for build-

ings) and the on-road transport sector, as they have the highest potential to be affected by

alterations in urban form and structure of the built environment. Information on gridded

GDP over the territory of the urban centre is drawn from an economic atlas [46] using

national statistics from the World Bank and the CIA’s World Factbook, down-scaled at
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a 5 arcmin resolution (approximately 9 km at the equator) via triangulation with admin-

istrative sub-national data on GDP per capita [59] and population data from the HYDE

database.

Data on variables such as temperature and precipitations are also important, as cli-

mate patterns may be relevant drivers of emission levels. Low temperatures, for instance,

may require increased heating in buildings and therefore increased energy consumption

and emissions. For this reason, we draw on information on temperature (in °C) and pre-

cipitations (in mm) from the CRU TS v4.06 dataset, where it is available at a resolution

of 0.5 degrees (approximately 56 km at the equator) as an yearly historical series from

1901 to 2021 [45]. The data are estimated via interpolation of real measurement spatial

information from weather station observations across the world. Information on popu-

lation at a resolution of 1 km is merged using the GHS-POP dataset, which relies on

spatial census data, down-scaled using processed satellite information on the distribution,

density and classification of built-up surface [43]. The total urban population is then used

to transform carbon emissions and GDP in per capita terms.

Finally, cities are assigned to their country, continent and World Bank income group

using information on administrative boundaries from the Global Administrative Bound-

aries dataset (GADM) [60]. In this case, the merged data are spatial polygons representing

the boundaries of administrative entities across the world at different levels (municipal-

ities, provinces, regions, countries and continents). We attach to each urban centre the

information of the municipality overlapping its surface, and the corresponding country

and continent. In cases where a city is intersecting multiple municipalities, we assign the

name of the municipality (and corresponding information on country and continent) with

the largest overlapping surface. We use this additional information to cluster errors at
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the country level in our regressions, to implement country specific time trends, for our

analysis of heterogeneity by income and continent and for descriptive purposes.

Description of the data

To provide an overview of the urban centres in the database, Extended Data Table 6

displays descriptive statistics on the average values of key variable in cities of different

continents, whereas Extended Data Figure 2 plots them as points on a world map, on a

colour scale based on the corresponding quintile in the distribution of CO2 emissions in

the residential sector. As expected, cities in developed regions such as North America

and Europe have higher values of per capita emissions compared to their counterparts

in Africa and most of Asia. Regarding the geographical distribution of urban centres, a

majority of the world’s urban population lives in Africa and Asia (and within the Asian

continent, as evidenced by Extended Data Figure 2, in China and India, two countries

that have experienced a booming urbanization rate in recent decades). Most cities in

the panel are located either in lower middle income countries (40%) or in upper middle

income countries (37%), and only a minority is located in low income (9%) or high income

countries (14%). Urban form indicators are quite evenly distributed, even though some

structural differences exist across continents (we look into this further below).

Extended Data Figure 3 zooms in on total area and the urban form indicators, the

main independent variables in our analysis. Specifically, it looks at changes in a simple

average of the indicators over time and by continent. In terms of total area, there has been

a slight convergence in the size of the average city across continents, as mean area has

slightly increased for Asia, Africa and at the global level, while it has decreased in other

regions. Nevertheless, urban centres in North America and Oceania remain far bigger
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on average than their counterparts in other continents. The CI and RI are persistent,

and do not vary by a large amount over the time period considered (1975 to 2020).

Their average values are quite similar (with the RI being slightly higher) reflecting the

fact that they capture the same concept, urban form, from slightly different angles. In

terms of geographical differences, urban centres in North America and Oceania appear to

have smaller values of both the CI and RI, indicating less compact cities. African and

European cities are instead more compact on average, as indicated by both the RI and

CI. The CI and RI of Asian cities have both dropped from 1975 to 2020, suggesting that

a deterioration in the compactness of these urban centres occurred in the time period

considered. Finally, the sprawl index has decreased at the global level over time, and is

lowest for Europe, South and North America.

Supplementary Information Figure 4 plots time trends in average population, the

share of residential built-up surface, GDP and CO2 emissions per capita over the period

of data availability (which varies depending on the variable) for urban centres in each

continent. All cities have experienced a rise in the share of residential built-up surface,

with the world average rising from 15% in 1975 to almost 20% in 2020. This suggests that

as urbanization increased across the world, the greater need for residential buildings in

already existing urban centres led to an increase in the surface devoted to residential use

within their borders. It also reflects the decrease in the sprawl index across continents

already displayed in Extended Data Figure 3. In terms of emissions and GDP per capita,

results are in line with expectations: urban centres in wealthier regions tend to emit

more CO2 on average, although they fare better now than they did in the past decades.

The opposite happens in Asia, where urban emissions are lower but have increased over

time, whereas Africa remains the continent with the smallest contribution to global CO2
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emissions per capita. Finally, urban GDP per capita of European, North American and

Oceanian cities is above the world average, whereas Asian, African and South American

cities are below.

Statistical information

In order to assess the impact of urban form on the emissions of CO2, we estimate regres-

sions with city-specific fixed effects that allow us to control for time-invariant factors, such

as the geographic or institutional characteristics that may influence the emission levels of

the city over time. The baseline specification is:

lnCO2Sit = αi + β lnXF
it + γ lnGDPit + θ′Eit + µt + ϵit

where lnCO2Sit is the natural logarithm of per capita CO2 emissions of sector S (where S

can be either the residential or the on-road transport sector) in city i at time t. lnXF
it is

the logarithm of urban form indicator F, corresponding to the area or to one of the three

urban form indicators computed (F ∈ {Area,CI,RI, SI}), and β is the corresponding

coefficient. The remaining controls include lnGDPit, i.e. log GDP per capita, with

corresponding coefficient γ, and Eit, the vector of log environmental controls (namely,

temperature and precipitations) with corresponding vector of coefficients θ. Finally, µt

represents year specific fixed effects and ϵit is the error term, clustered at the country

level. It should be noted that the use of natural logarithms for both the dependent

and the independent variables of the regression allows for the interpretation of estimated

coefficients as elasticities. The coefficient β, for instance, should be interpreted as the

percentage change in per capita emissions associated with a 1% change in the urban form

indicator used.
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To further explore the links between urban form and emissions, while exploiting

the heterogeneity in the data, we also include interaction terms between compactness

and the continent and income class of the country where the city is located, to assess

whether the association detected is altered in groups of cities sharing more homogeneous

characteristics. The regression equation takes the form:

lnCO2Sit = αi + β lnXict +
∑
G∈G

βG ∗ lnXit ∗ 1(c ∈ G) + γ lnGDPit + θ′Eit + µt + ϵit

where all variables are the same as in the previous fixed effects model, and lnCO2Sit is the

natural logarithm of per capita CO2 emissions of sector S in city i, and time t. This time,

the urban form indicator lnXit is interacted with a set of indicator functions taking value

1 if country c where the urban centre is located belongs to group G. The group can refer

either to one of the World Bank income classes (with G ∈ G = {LIC,LMIC,UMIC,HIC}),

or to one of the 6 continents already employed for the computation of descriptive statistics

(G ∈ G = {Africa,Asia,Europe,North America,Oceania, South America}). Omitting

from the regression one of the continents or income groups, the coefficient β on the urban

form indicator lnXit represents the effect of urban form in the omitted reference group,

whereas the βG coefficients convey the additional effect of urban form in the remaining

groups. From such a model, we can estimate the marginal effect of each of the urban

form indicators on per capita emissions, conditional on the city being located in a specific

income class or continent, an approach allowing us to investigate heterogeneous effects.

Data availability

Both the code used to perform the spatial join of the data (in the R Markdown language)

and the final database are to be made publicly available. We are in the process of final

25



cleaning of the code.
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Tables

Table 1: Associations between urban form indicators and residential CO2 emissions

(1) (2) (3) (4)

GDP p.c. 0.145∗∗∗ 0.171∗∗∗ 0.175∗∗∗ 0.176∗∗∗

(0.047) (0.050) (0.050) (0.049)

Area 0.188∗∗∗

(0.030)

CI -0.244∗∗∗

(0.035)

RI -0.123∗∗∗

(0.023)

SI 0.197∗∗

(0.071)

Constant -4.271∗∗∗ -3.991∗∗∗ -3.963∗∗∗ -3.789∗∗∗

(0.422) (0.425) (0.426) (0.424)

Env. controls Yes Yes Yes Yes
Observations 53,134 53,134 53,134 53,098
R2 0.099 0.081 0.079 0.082

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All variables are taken in natural
log terms.
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Table 2: Associations between urban form indicators and on-road transport CO2 emis-
sions

(1) (2) (3) (4)

GDP p.c. 0.525∗∗∗ 0.564∗∗∗ 0.570∗∗∗ 0.571∗∗∗

(0.155) (0.158) (0.157) (0.156)

Area 0.223∗∗∗

(0.062)

CI -0.338∗∗∗

(0.077)

RI -0.211∗∗∗

(0.050)

SI -0.120
(0.247)

Constant -7.483∗∗∗ -7.165∗∗∗ -7.139∗∗∗ -7.126∗∗∗

(1.153) (1.279) (1.300) (1.219)

Env. controls Yes Yes Yes Yes
Observations 20,000 20,000 20,000 19,998
R2 0.755 0.747 0.746 0.745

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All variables are taken in natural
log terms.
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Figures

Figure 1: Changes in the share of urban population and urban CO2 emissions over time

(a) World (b) Africa

(c) Asia (d) Europe

(e) North America (f) Oceania

(g) South America
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Figure 2: Time trends in urban land use and urban population

(a) Total urban area over urban population

(b) Residential built-up surface over urban population

Note: the ratios are normalised to 100 in 1975, the first year of data availability, and should be interpreted
in relation to that reference year.
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Figure 3: Urban form indicators for a sample urban centre

(a) Compactness Index (CI) (b) Range Index (RI)

(c) Sprawl Index (SI)

Note: the maps refer to a random city in the sample, Milan in Italy, for the year 2020.
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Figure 4: Heterogeneous effects of urban form indicators across continents

(a) Total area (b) Compactness Index

(c) Range Index (d) Sprawl Index

Note: the bands represent 95% confidence intervals around the coefficients.
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Extended Data

Table 1: Associations between urban form indicators and CO2 emissions (balanced panel)

(1) (2) (3) (4) (5) (6) (7) (8)

GDP p.c. 0.138∗∗∗ 0.168∗∗∗ 0.171∗∗∗ 0.172∗∗∗ 0.528∗∗∗ 0.568∗∗∗ 0.573∗∗∗ 0.574∗∗∗

(0.047) (0.049) (0.049) (0.048) (0.150) (0.155) (0.155) (0.152)

Area 0.223∗∗∗ 0.282∗∗∗

(0.035) (0.045)

CI -0.269∗∗∗ -0.341∗∗∗

(0.039) (0.077)

RI -0.146∗∗∗ -0.164∗∗∗

(0.022) (0.042)

SI 0.179∗∗ -0.207
(0.072) (0.248)

Constant -4.700∗∗∗ -4.328∗∗∗ -4.294∗∗∗ -4.123∗∗∗ -7.823∗∗∗ -7.285∗∗∗ -7.219∗∗∗ -7.286∗∗∗

(0.346) (0.339) (0.342) (0.348) (1.194) (1.311) (1.328) (1.245)

Dependent var. RES RES RES RES TRA TRA TRA TRA
Env. controls Yes Yes Yes Yes Yes Yes Yes Yes
Observations 41,402 41,402 41,402 41,396 15,052 15,052 15,052 15,051
R2 0.112 0.089 0.086 0.088 0.772 0.762 0.760 0.760

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All variables are taken in natural
log terms.
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Table 2: Associations between urban form indicators and total CO2 emissions

(1) (2) (3) (4)

GDP p.c. 0.400∗∗∗ 0.438∗∗∗ 0.442∗∗∗ 0.442∗∗∗

(0.054) (0.053) (0.052) (0.052)

Area 0.253∗∗∗

(0.030)

CI -0.245∗∗∗

(0.038)

RI -0.072∗∗

(0.028)

SI -0.010
(0.104)

Constant -4.687∗∗∗ -4.287∗∗∗ -4.240∗∗∗ -4.220∗∗∗

(0.343) (0.342) (0.342) (0.336)

Env. controls Yes Yes Yes Yes
Observations 53,685 53,685 53,685 53,648
R2 0.441 0.424 0.423 0.423

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All variables are taken in natural
log terms.
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Table 3: Associations between urban form indicators and CO2 emissions, with country-
specific time trends

(1) (2) (3) (4) (5) (6) (7) (8)

GDP p.c. 0.263∗∗∗ 0.284∗∗∗ 0.287∗∗∗ 0.282∗∗∗ 0.187∗ 0.233∗ 0.240∗ 0.239∗

(0.043) (0.046) (0.046) (0.047) (0.104) (0.123) (0.125) (0.124)

Global trend -0.019∗∗∗ -0.018∗∗∗ -0.018∗∗∗ -0.015∗∗∗ 0.010∗ 0.010 0.009 0.010
(0.002) (0.002) (0.002) (0.003) (0.006) (0.006) (0.006) (0.006)

Area 0.116∗∗∗ 0.225∗∗∗

(0.025) (0.036)

CI -0.160∗∗∗ -0.335∗∗∗

(0.030) (0.063)

RI -0.092∗∗∗ -0.176∗∗

(0.018) (0.072)

SI 0.324∗∗∗ 0.186
(0.043) (0.127)

Constant 19.914∗∗∗ 19.361∗∗∗ 19.312∗∗∗ 13.538∗∗∗ -90.496∗∗∗ -90.011∗∗∗ -89.828∗∗∗ -92.580∗∗∗

(4.208) (4.422) (4.443) (4.694) (11.198) (13.101) (13.386) (11.956)

Dependent var. RES RES RES RES TRA TRA TRA TRA
Env. controls Yes Yes Yes Yes Yes Yes Yes Yes
Observations 53,134 53,134 53,134 53,098 20,000 20,000 20,000 19,998
R2 0.343 0.336 0.335 0.345 0.845 0.837 0.836 0.836

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All variables are taken in natural
log terms.

4



Table 4: Associations between urban form indicators and CO2 emissions, one-lag
Arellano-Bond estimator

(1) (2) (3) (4) (5) (6) (7) (8)

GDP p.c. 0.121∗∗∗ 0.153∗∗∗ 0.156∗∗∗ 0.176∗∗∗ 0.363∗∗∗ 0.421∗∗∗ 0.428∗∗∗ 0.433∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.014) (0.014) (0.014) (0.014)

L1.CO2 -0.068∗∗∗ -0.022 -0.019 0.294∗∗∗ 0.621∗∗∗ 0.619∗∗∗ 0.620∗∗∗ 0.612∗∗∗

(0.017) (0.017) (0.017) (0.017) (0.014) (0.015) (0.015) (0.016)

Area 0.170∗∗∗ 0.285∗∗∗

(0.006) (0.016)

CI -0.174∗∗∗ -0.369∗∗∗

(0.019) (0.052)

RI -0.112∗∗∗ -0.184∗∗∗

(0.020) (0.055)

SI 0.535∗∗∗ -0.044
(0.014) (0.047)

Constant -3.842∗∗∗ -3.465∗∗∗ -3.445∗∗∗ -2.200∗∗∗ -5.747∗∗∗ -5.381∗∗∗ -5.342∗∗∗ -5.358∗∗∗

(0.087) (0.086) (0.086) (0.087) (0.219) (0.222) (0.223) (0.227)

Dependent var. RES RES RES RES TRA TRA TRA TRA
Env. controls Yes Yes Yes Yes Yes Yes Yes Yes
Observations 38,276 38,276 38,276 38,262 7,910 7,910 7,910 7,910

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All variables are taken in natural
log terms.
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Table 5: Regressions per quintile of the per capita residential emissions distribution

Quintiles:
1 2 3 4 5

Dependent var.: CO2 emissions p.c. (residential)

Area 0.308∗∗ 0.404∗∗∗ 0.213∗∗ 0.151∗∗∗ 0.045
(0.132) (0.083) (0.081) (0.036) (0.036)

CI -0.400∗∗∗ -0.375∗∗∗ -0.219∗∗∗ -0.162∗∗∗ -0.013
(0.088) (0.077) (0.057) (0.038) (0.048)

RI -0.268∗∗∗ -0.152∗∗ -0.110∗ -0.081∗ 0.041
(0.074) (0.068) (0.060) (0.046) (0.061)

SI 0.221∗ 0.335∗∗ 0.325∗∗∗ 0.177∗ 0.201
(0.120) (0.136) (0.105) (0.092) (0.149)

Dependent var.: CO2 emissions p.c. (on-road transport)

Area 0.682∗∗∗ 0.226∗∗∗ 0.337∗∗ 0.210∗∗ 0.083∗∗∗

(0.031) (0.009) (0.062) (0.094) (0.005)

CI -0.566∗∗ -0.226∗∗∗ -0.200∗ -0.143 -0.091
(0.103) (0.009) (0.059) (0.335) (0.060)

RI -0.370∗∗ -0.024 -0.054 0.185 -0.083
(0.072) (0.014) (0.050) (0.249) (0.090)

SI 0.876∗∗∗ 0.551∗∗∗ 0.470∗∗ -0.298∗∗ -0.176∗∗∗

(0.055) (0.037) (0.093) (0.106) (0.044)

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. All variables are taken in natural
log terms. The quintiles in the distribution of the dependent variable are calculated for the first year
of data availability in the regressions, i.e. 1990 for residential emissions and 2000 for on-road transport
emissions. Environmental controls (temperature and precipitations) and GDP per capita are included.
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Table 6: Summary statistics by continent

Var. Africa Asia Europe
North
America

Oceania
South
America

World

N. cities 2, 133 6, 677 1, 125 703 79 718 11, 435

LIC 38% 4% 0% 0% 0% 0% 9%

LMIC 57% 48% 8% 7% 13% 2% 40%

UMIC 5% 43% 24% 39% 29% 91% 37%

HIC 0% 5% 69% 54% 58% 7% 14%

Population 224, 146 282, 846 267, 019 387, 931 333, 892 353, 932 282, 386

Area 37.04 43.52 61.99 144.34 175.79 66.19 52.62

CI 0.69 0.65 0.64 0.60 0.55 0.65 0.65

RI 0.68 0.64 0.66 0.63 0.56 0.66 0.65

SI 0.42 0.48 0.39 0.36 0.36 0.34 0.44

CO2 p. c. 0.61 2 4.41 4.98 4.73 1.40 2.32

CO2 p. c. (RES) 0.11 0.21 0.83 1.23 0.45 0.13 0.34

CO2 p. c. (TRA) 0.03 0.15 0.38 0.93 0.70 0.17 0.25

GDP p.c. 2, 372 6, 292 18, 022 26, 561 25, 219 8, 494 8, 938

Precipitations 955 1, 234 715 1, 088 1, 563 1, 296 1, 125

Temperature 23.60 19.97 10.10 17.66 19.12 21.39 19.27

Note: CI = Compactness Index; RI = Range Index; SI = Sprawl Index.
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Table 7: Correlation matrix for main regressors

GDP p.c. Area CI RI SI

GDP p.c. 1.000

Area 0.332∗∗∗ 1.000

CI -0.323∗∗∗ -0.413∗∗∗ 1.000

RI -0.137∗∗∗ -0.158∗∗∗ 0.752∗∗∗ 1.000

SI -0.224∗∗∗ -0.163∗∗∗ 0.104∗∗∗ -0.037∗∗∗ 1.000

Observations 83,201

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 1: Heterogeneous effects of urban form indicators across income classes

(a) Total area (b) Compactness Index

(c) Range Index (d) Sprawl Index

Note: the bands represent 95% confidence intervals around the coefficients.

9



Figure 2: World map of urban centres and CO2 emissions per capita (residential sector)
in 2020
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Figure 3: Changes in the share of urban population and urban CO2 emissions over time

(a) Area (b) Compactness Index

(c) Range Index (d) Sprawl Index

11



Supplementary information

The analysis of urban form and CO2 emissions of the residential (heating and cooling for

buildings) and on-road transport sectors is based on different spatial data sources, joined

together using tools available in the R programming language. The starting point for these

data consists of the urban boundaries identified following the Degree of Urbanization

definition (where cities are defined based on a population threshold of at least 50,000

inhabitants and population density of at least 1,500 inhabitants per square km). To

obtain the boundaries, we use the GHS-SMOD raster dataset, which codes 1 square km

pixels based on whether they belong to rural or urban clusters, and assigns a specific code

to pixels falling within the “Degree of Urbanization” population and density thresholds

[1]. We polygonise continuous raster pixels classified as “urban centres” and obtain spatial

vector data on the boundaries of each of these entities. Supplementary Information Figure

1 maps the polygonization process for a sample region, the greater Paris area in France, for

our reference year, 2020 (the GHS-SMOD data cover the entire world at 5 years intervals

between 1975 and 2020, and we repeat the same process each year). Supplementary

Information Figure 2 shows the changes in resulting boundaries across time periods, from

1975 to 2020, for two random cities in the sample.

To assign cities to corresponding information on CO2 emissions, population, GDP and

climate variables (temperatures and precipitations) each year, we proceed with a spatial

join of the different data sources available and listed in Supplementary Information Table

1. For the merge, the polygons data on urban centres obtained starting from the GHS-

SMOD raster data represents the master database, to which the raster information on

other variables is joined. Before implementing the merge, the raster and the polygons data

12



need to be projected spatially to the same Coordinate Reference System (CRS): we choose

to re-project the polygons data to the same CRS as the raster data, which generally use

the WGS84 projection, so we repeat this process for each spatial join. The only exceptions

are information on population and built-up surface, which use the same CRS as our data

on urban centres, and whose merge requires no re-projection. Supplementary Information

Figure 3 shows the spatial juxtaposition of the urban boundaries and the raster data on

on-road transport CO2 emissions (taken as an example) in 2020, again for the Paris

greater region. We match each polygon to the overlapping raster pixels, and we compute

the share of raster cell surface that intersects the urban centre (the “coverage fraction”).

This share will be equal to 1 for cells entirely inside the urban centre: in Supplementary

Information Figure 3, for instance, the raster pixel highlighted with an arrow has a value

of emissions of 37,513 tonnes. Being entirely contained in the Paris urban centre, it is

assigned weight 1 in the computation. Finally, we sum together all the emissions values

within the polygon boundaries, multiplied by the weights corresponding to the coverage

fraction values. We thus come up with estimates of values of the raster variables (e.g.

emissions, GDP, etc.) within the territory of the urban centre. The assumption being

made to aggregate the raster data at the urban level is that the values of raster variables

are uniformly distributed across the surface occupied by the raster pixel. This assumption

is more believable for climate variables such as temperature and precipitations, while it

becomes more problematic for CO2 or GDP, whose values are clearly more concentrated

where human activity is stronger. Nevertheless, the method allows for consistency in the

way we estimate key variables across cities and provides us with an overview of urban

socio-economic variables. Furthermore, for data at a higher resolution the bias due to

the merge is reduced, even though estimates may be less accurate precisely because of

the more pronounced spatial down-scaling. For information on population and built-up
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surface, the match with the urban boundaries is most reliable as the sources come from

the same wider GHSL data project and share the same CRS and high resolution of 1 km.

Time trends for CO2 emissions and other ancillary variables obtained from the merge

are displayed in Supplementary Information Figure 4, illustrating how urban population,

the share of built-up surface, per capita GDP and CO2 emissions evolved over the time

span of our sample. Finally, we also assign to each urban centre information on the cor-

responding municipality, region and country using the Global Administrative Boundaries

(GADM) database [2]. In this case, the spatial join is performed between two spatial vec-

tor datasets with polygon geometry, and the boundaries of polygons in the two datasets

do not necessarily coincide. A city defined using the Degree of Urbanization criterion

may in fact overlap the boundaries of different administrative-level municipalities. To

merge the data, we assign to each urban centre the administrative unit with the largest

overlapping surface, and the corresponding region, country, continent and country income

class.
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Table 1: List of data sources

Data sources Resolution Years
Type of
spatial join

Main variables

GHS–SMOD
2023 [1]

1 km
1975–2020
(5 years
intervals)

Master data Urban boundaries

GHS–POP
2023 [3]

1 km
1975–2020
(5 years
intervals)

Sum within
urban
boundaries

Population

GHS–BUILT
2023 [4]

1 km
1975–2020
(5 years
intervals)

Sum within
urban
boundaries

Built-up surface: total,
residential and
non-residential (m2)

EDGAR v7.1
[5, 6]

0.1 degrees
(approx.
11.1x11.1
km at the
equator)

1970–2021
(yearly)

Weighted sum
within urban
boundaries

CO2 emissions for
heating and cooling of
buildings, from
on-road transport and
total (tonnes)

CRU TS v4.07
[7]

0.5 degrees
(approx.
56x56 km at
the equator)

1901–2021
(yearly)

Weighted sum
within urban
boundaries

Temperature (◦C) and
precipitations (mm)

Gridded data
on GDP [8]

5 arcmin
(approx.
9x9 km at
the equator)

1990–2015
(yearly)

Weighted sum
within urban
boundaries

GDP (PPP, 2011
USD)

GADM
Dataset [2]

Geo-
referenced
boundaries
of adminis-
trative units

2022

The name of the
administrative
unit with largest
overlapping
surface was
joined

Names of admin.
Units (country name,
province name,
municipality name)
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Figure 1: Polygonization of GHS-SMOD raster data for urban centres

(a) GHS-SMOD raster data (b) Polygonized raster data
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Figure 2: Changes in urban boundaries at selected time periods for two cities in the
sample

(a) Berlin, Germany (b) Havana, Cuba
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Figure 3: Spatial juxtaposition of the boundaries of urban centres and on-road transport
CO2 emissions data in 2020 for the Paris region
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